Teoreme de Bernoulli

Para el comportamiento físico de un fluido, véase Principio de Bernoulli.

El Teorema de Bernoulli es un caso particular de la Ley de los grandes números, que precisa la aproximación frecuencial de un suceso a la probabilidad p de que este ocurra a medida que se va repitiendo el experimento.

Dados un suceso A, su probabilidad p de ocurrencia, y n pruebas independientes para determinar la ocurrencia o no-ocurrencia de A.
Sea f el número de veces que se presenta A en los n ensayos y \varepsilon un número positivo cualquiera, la probabilidad de que la frecuencia relativa f/n discrepe de p en más de \varepsilon (en valor absoluto) tiende a cero al tender n a infinito. Es decir:

\lim_{n \rightarrow \infty}{\Rho\left(\left|\frac{f}{n}-p\right|>\varepsilon \right)} = 0

 

Para el teorema matemático enunciado por Jakob Bernoulli, véase Teorema de Bernoulli.
Esquema del Principio de Bernoulli.

El principio de Bernoulli, también denominado ecuación de Bernoulli o Trinomio de Bernoulli, describe el comportamiento de un fluido moviéndose a lo largo de una línea de corriente. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes:

  1. Cinética: es la energía debida a la velocidad que posea el fluido.
  2. Potencial gravitacional: es la energía debido a la altitud que un fluido posea.
  3. Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.

La siguiente ecuación conocida como "Ecuación de Bernoulli" (Trinomio de Bernoulli) consta de estos mismos términos.


\frac{V^2 \rho}{2}+{P}+{\rho g z}=constante

donde:

Para aplicar la ecuación se deben realizar los siguientes supuestos:

  • Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica se encuentra en una zona 'no viscosa' del fluido.
  • Caudal constante
  • Flujo incompresible, donde ρ es constante.
  • La ecuación se aplica a lo largo de una línea de corriente o en un flujo irrotacional

Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler.

Un ejemplo de aplicación del principio lo encontramos en el flujo de agua en tubería.

 

Características y consecuencias

Cada uno de los términos de esta ecuación tienen unidades de longitud, y a la vez representan formas distintas de energía; en hidráulica es común expresar la energía en términos de longitud, y se habla de altura o cabezal, esta última traducción del inglés head. Así en la ecuación de Bernoulli los términos suelen llamarse alturas o cabezales de velocidad, de presión y cabezal hidráulico, del inglés hydraulic head; el término z se suele agrupar con P / γ para dar lugar a la llamada altura piezométrica o también carga piezométrica.

 \overbrace{{V^2 \over 2 g}}^{\mbox{cabezal de velocidad}}+\overbrace{\underbrace{\frac{P}{\gamma}}_{\mbox{cabezal de presión}} + z}^{\mbox{altura o carga piezométrica}} = \overbrace{H}^{\mbox{Cabezal o Altura hidráulica}}

También podemos reescribir este principio en forma de suma de presiones multiplicando toda la ecuación por γ, de esta forma el término relativo a la velocidad se llamará presión dinámica, los términos de presión y altura se agrupan en la presión estática.

Esquema del efecto Venturi.
 \underbrace{\frac{\rho V^2}{2}}_{\mbox{presión dinámica}}+\overbrace{P+ \gamma z}^{\mbox{presión estática}}=constante

o escrita de otra manera más sencilla:

q + p = p0

donde

  • q=\frac{\rho V^2}{2}
  • p = P + γz
  • p0 es una constante-

Igualmente podemos escribir la misma ecuación como la suma de la energía cinética, la energía de flujo y la energía potencial gravitatoria por unidad de masa:

\overbrace{\frac{{V}^2}{2}}^{\mbox{energía cinética}}+\underbrace{\frac{P}{\rho}}_{\mbox{energía de flujo}}+\overbrace{g z}^{\mbox{energía potencial}} = constante

 

Ecuación de Bernoulli y la Primera Ley de la Termodinámica

 
\frac{{V_1}^2}{2 g}+\frac{P_1}{\gamma}+z_1\frac{g}{g_c}+ W = h_f + \frac{{V_2}^2}{2 g}+\frac{P_2}{\gamma}+z_2\frac{g}{g_c}

Demostración

Escribamos la primera ley de la termodinámica con un criterio de signos termodinámico conveniente:


w + q = \Delta h + \Delta \frac{V^2}{2} + g \Delta z

Recordando la definición de la entalpía h = u + Pv, donde u es la energía interna y v se conoce como volumen específico v = 1 / ρ. Podemos escribir:


w + q = \Delta u + \Delta \frac{P}{\rho} + \Delta \frac{V^2}{2} + g \Delta z

que por la suposiciones declaradas más arriba se puede reescribir como:


w + q = \frac{P_2}{\rho} - \frac{P_1}{\rho} + \frac{{V_2}^2}{2} - \frac{{V_1}^2}{2} + g (z_2 - z_1)

dividamos todo entre el término de la aceleración de gravedad


\frac{w}{g} + \frac{q}{g} = \frac{P_2}{\gamma} - \frac{P_1}{\gamma} + \frac{{V_2}^2}{2 g} - \frac{{V_1}^2}{2 g} + z_2 - z_1

 

Aplicaciones del Principio de Bernoulli

Airsoft

Chimenea

Tubería

Natación

Movimiento de una pelota o balón con efecto

Carburador de automóvil

Flujo de fluido desde un tanque

Dispositivos de Venturi